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Exercise 1

We fix a standard one-dimensional (F,P)–Brownian motion.

1) Show that for any C1,2 function f : [0, +∞) × R −→ R, such that there exists some continuous function C :
[0, +∞) −→ [0, +∞) with

|∂xf(t, x)| ≤ C(t)eC(t)|x|, (t, x) ∈ [0, +∞) × R, (0.1)

the process (f(t, Bt))t≥0 will be an (F,P)-martingale if and only if

∂tf(t, x) +
1

2
∂2

xxf(t, x) = 0, (t, x) ∈ [0, +∞) × R. (0.2)

2) in this question, we are looking for functions f of the form

f(t, x) =

n
∑

i=0

n
∑

j=0

ai,jtixj , (t, x) ∈ [0, +∞) × R,

for some integer n and real numbers (ai,j)(i,j)∈{0,...,n}2 . Show that the process f(t, Bt) is an (F,P)-martingale if
and only if the (a0,j)j∈{0,...,n} are arbitrarily fixed and







ai,j = (−1)i (j + 2i)!

2i!j!
a0,j+2i, j + 2i ≤ n,

ai,j = 0, j + 2i > n,

1) Indeed, by Itô’s formula the Itô process (f(t, Bt))t≥0 is an (FB,P,P)–local martingale if and only if its
drift is equal to 0 with P-probability 1, that is

∂tf(t, Bt) +
1

2
∂2

xxf(t, Bt) = 0, t ≥ 0, P–a.s.

Since the support of the P-distribution of Bt is R, we deduce the desired condition. Next, since inequality
(0.1) holds, the volatility of (f(t, Bt))t≥0 is automatically in H

2(R,FB,P,P), which shows the martingale
property.

2) In this case, inequality (0.1) is obviously satisfied, and direct computations prove that (0.2) holds if
and only if a1,0 = a1,1 = 0 when n = 1 (the case n = 0 is trivial), and when n ≥ 2



























ai+1,j = − (j + 2)(j + 1)

2(i + 1)
ai,j+2, i ∈ {0, . . . , n − 1}, j ∈ {0, . . . , n − 2},

an,j+2 = 0, j ∈ {0, . . . , n − 2},

ai+1,n−1 = 0, i ∈ {0, . . . , n − 1},

ai+1,n = 0, i ∈ {0, . . . , n − 1}.

It can then easily be checked that this equivalent to having the (a0,j)j∈{0,...,n} arbitrarily fixed and







ai,j = (−1)i (j + 2i)!

2i!j!
a0,j+2i, j + 2i ≤ n,

ai,j = 0, j + 2i > n,
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Exercise 2

Consider, for any x ∈ R
d, the SDE

dXx
t = a(Xx

t )dt + b(Xx
t )dWt, Xx

0 = x,

where W is a R
m-valued Brownian motion, a : Rd −→ R

d and b : Rd −→ R
d×m are measurable and locally bounded. We

fix a non-empty, bounded open subset U of Rd and assume that for any x ∈ U , we have with T x
U := inf{s ≥ 0 : Xx

s /∈ U
}

,
that T x

U is P-integrable.

Moreover, consider the boundary problem

Lu(x) + c(x)u(x) = −f(x), for x ∈ U, u(x) = g(x), for x ∈ ∂U,

where f ∈ Cb(U), g ∈ Cb(∂U), c ≤ 0 is a uniformly bounded function on R
d, and L is defined by

Lf(x) :=

d
∑

i=1

ai(x)
∂f

∂xi
(x) +

1

2

∑

(i,j)∈{1,...,d}2

(

bb⊤
)ij

(x)
∂2f

∂xi ∂xj
(x).

Show that if u ∈ C2(U) ∩ C(Ū) is a solution of the above boundary problem and (Xx
t )t≥0 is a solution of the SDE for

some x ∈ U , then

u(x) = E
P

[

g(Xx
T x

U

) exp

(
∫ T x

U

0

c(Xx
s )ds

)]

+ E
P

[
∫ T x

U

0

f(Xx
s ) exp

(
∫ s

0

c(Xx
r )dr

)

ds

]

.

For m ∈ N
⋆ large enough so that 1

m
< d(x, U c), we define

Tm := inf
{

s ≥ 0 : d(Xx
s , U c) ≤ 1/m

}

,

and construct um ∈ C2
c (Rd,R) such that u = um on

{

z ∈ U : d(z, U c) ≥ 1/m
}

. We apply Itô’s formula to

um(Xx
t ) exp

( ∫ t

0
c(Xx

s )ds
)

, take then the expectation and use that the local martingale is a true martingale
as b is locally bounded and u ∈ C2

c to obtain that (for more details, see the end of this document)

E
P

[

um(Xx
t∧T x

m

) exp

(
∫ t∧T x

m

0

c(Xx
s )ds

)]

− um(x) = E
P

[
∫ t∧T x

m

0

(

Lum(Xx
s ) + c(Xx

s )um(Xx
s )

)

exp

(
∫ s

0

c(Xx
r )dr

)

ds

]

.

Now, as um = u on
{

z ∈ U : d(z, U c) ≥ 1
m

}

, by definition of T x
m and as u is the solution of the boundary

problem, we obtain that

u(x) = EP

[

u(Xx
t∧T x

m

) exp

(
∫ t∧T x

m

0

c(Xx
s )ds

)]

+ E
P

[
∫ t∧T x

m

0

f(Xx
s ) exp

(
∫ s

0

c(Xx
r )dr

)

ds

]

.

Since T x
m ↑ T x

U < ∞, we can let t → ∞ and then m → ∞ to conclude, by the dominated convergence
theorem, that

u(x) = E
P

[

g(Xx
T x

U

) exp

(
∫ T x

U

0

c(Xx
s )ds

)]

+ E
P

[
∫ T x

U

0

f(Xx
s ) exp

(
∫ s

0

c(Xx
r )dr

)

ds

]

.

Exercise 3

Let (Bt)t≥0 be a standard one-dimensional Brownian motion.

1) Show that the SDE

Xt = x +

∫ t

0

√

1 + X2
s dBs +

1

2

∫ t

0

Xsds, (0.3)

admits a unique strong solution for all x ∈ R.
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2) Fix x ∈ R and (βt, γt)t≥0 two independent one-dimensional Brownian motions. Show that

Yt := exp(βt)

(

x +

∫ t

0

exp(−βs)dγs

)

, t ≥ 0,

is well-defined and solves (0.3) for some well-chosen Brownian motion B. Deduce that for a := argsinh(x),

(Yt, t ≥ 0)
(law)
= (sinh(a + Bt), t ≥ 0).

3) We now go to a slightly more general setting.

a) Show that if the map ϕ : R −→ R is a C2 diffeomorphism from R, then Φt := ϕ(Bt) satisfies

Φt = ϕ(0) +

∫ t

0

σ(Φs)dBs +

∫ t

0

b(Φs)ds, (0.4)

where

σ(x) := (ϕ′ ◦ ϕ(−1))(x), b(x) :=
1

2
(ϕ′′ ◦ ϕ(−1))(x).

b) Conversely, if σ, b : R −→ R are Lipschitz functions with appropriate growth, we know that the SDE (0.4)
admits a unique strong solution. Under which conditions on (σ, b) can we solve the system

ϕ′(y) = σ(ϕ(y)), ϕ′′(y) = 2b(ϕ(y)),

so that the solution of (0.4) is Φt = ϕ(Bt)?

1) The drift and volatility are clearly Lipschitz-continuous with linear growth, hence the standard
Cauchy–Lipschitz theorem applies.

2) We have for any t ≥ 0

E
P

[
∫ t

0

e−2βsds

]

=

∫ t

0

e2sds < +∞,

ensuring that Y is well-defined. Next, applying Itô’s formula to Y , we get

dYt =

(

x +

∫ t

0

exp(−βs)dγs

)

eβt

(

dβt +
1

2
dt

)

+ dγt =
1

2
Ytdt +

√

1 + Y 2
t

(

Yt
√

1 + Y 2
t

dβt +
1

√

1 + Y 2
t

dγt

)

.

Now, let B :=
∫ ·

0

(

Yt√
1+Y 2

t

dβt + 1√
1+Y 2

t

dγt

)

. We have

[B]t = t,

ensuring by Lévy’s characterisation that B is a Brownian motion.

Next, it is direct to check that Xt := (sinh(a + Bt) is the strong solution to the SDE, which gives the
desired result by uniqueness in law.

3)a) It is a simple application of Itô’s formula. Indeed, we have

Φt = Φ0 +

∫ t

0

ϕ′(Bs)dBs +
1

2

∫ t

0

ϕ′′(Bs)ds,

and it suffices to notice that Bt = ϕ(−1)(Φt), t ≥ 0.

b) If we can find ϕ as a C2 diffeomorphism satisfying the two ODEs, then clearly Φ = ϕ(B). Now, it is
necessary for this that

ϕ′(y)σ′(ϕ(y)) = σ(ϕ(y))σ′(ϕ(y)) = 2b(ϕ(y)).
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Hence, ϕ being a diffeomorphism on R, this means that we must have

σσ′ = 2b.

Under this assumption, and if for instance σσ′ is Lipschitz-continuous, and σ has a fixed sign, the result
will hold.

How to apply Itô’s formula in Exercise 2?

We want to apply Itô’s formula to

um(Xx
t ) exp

(
∫ t

0

c(Xx
s )ds

)

= f(Yt, Zt),

where f : Rd+1 → R, f(y, z) = um(y) exp(z), Yt = Xx
t and Zt =

∫ t

0
c(Xx

s )ds. In particular, note that Yt = (Y 1
t , . . . , Y d

t )

is an R
d-valued process, while Zt is an R-valued process. Hence, we have

∇f(y, z) =

(

∇um(y) exp(z)
um(y) exp(z)

)

= exp(z)

(

∇um(y)
um(y)

)

∈ R
d+1,

D2f(y, z) =

(

D2um(y) exp(z) ∇um(y) exp(z)
(∇um(y))T exp(z) um(y) exp(z)

)

= exp(z)

(

D2um(y) ∇um(y)
(∇um(y))T um(y)

)

∈ R
(d+1)×(d+1),

and
(

dYt

dZt

)

=

(

a(Yt)
c(Yt)

)

dt +

(

b(Yt)
0

)

dWt.

Therefore, the drift vector of (Yt, Zt) is (a(Yt), c(Yt)) and the diffusion matrix is (b(Yt), 0). In particular, the quadratic
covariation matrix is given by

(

b(Yt)
0

)

(

b(Yt)
T 0

)

=

(

b(Yt)b(Yt)
T 0

0 0

)

,

i.e., d[Y i, Y j ]t = (b(Yt)b(Yt)
T )ij and d[Z, Z]t = d[Y i, Z]t = 0, for any i, j = 1, . . . , d.

Now, recall Itô’s formula (see Theorem 3.4.1, lecture notes) and note that if we have a function g : R × R
n → R (C1 in

time and C2 in space) and an R
n-valued Itô process dXt = µtdt + σtdWt, then Itô’s formula can be written as follows

g(t, Xt) = g(0, X0) +

∫ t

0



∂tg(s, Xs) + (∇xg(s, Xs))T µt +
1

2

n
∑

i,j=1

(σtσ
T
t )ij(D2

xg(s, Xs))ij



 dt +

∫ t

0

(∇xg(s, Xs))T σtdWt,

where ∇xg(s, Xs) is the vector of the spacial first derivatives and D2
xg(s, Xs) the matrix of the spacial second derivatives.

Then, let us apply Itô’s formula to the function f and the R
d+1-valued process (Yt, Zt). As the function f does not

depend on time, we get

f(Yt, Zt) = f(Y0, Z0) +

∫ t

0



(∇f(Ys, Zs))T

(

a(Yt)
c(Yt)

)

+
1

2

d+1
∑

i,j=1

((

b(Yt)b(Yt)
T 0

0 0

))ij

(D2f(Ys, Zs))ij



 dt

+

∫ t

0

(∇f(Ys, Zs))T

(

b(Yt)
0

)

dWt

= f(Y0, Z0) +

∫ t

0

exp(Zs)



(∇um(Ys))T a(Ys) + um(Ys)c(Ys) +
1

2

d
∑

i,j=1

(b(Yt)b(Yt)
T )ij(D2um(Ys))ij



 ds

+

∫ t

0

exp(Zs)(∇um(Ys))T b(Yt)dWt

= um(Y0) +

∫ t

0

exp(Zs) [Lum(Ys) + um(Ys)c(Ys)] ds +

∫ t

0

exp(Zs)(∇um(Ys))T b(Yt)dWt,

where L is the Dynkin operator defined in Ex. 2.
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