Assignment 10-solutions

Exercise 1

We fix a standard one-dimensional (\mathbb{F}, \mathbb{P})-Brownian motion.

1) Show that for any $C^{1,2}$ function $f:[0,+\infty) \times \mathbb{R} \longrightarrow \mathbb{R}$, such that there exists some continuous function C : $[0,+\infty) \longrightarrow[0,+\infty)$ with

$$
\begin{equation*}
\left|\partial_{x} f(t, x)\right| \leq C(t) \mathrm{e}^{C(t)|x|},(t, x) \in[0,+\infty) \times \mathbb{R} \tag{0.1}
\end{equation*}
$$

the process $\left(f\left(t, B_{t}\right)\right)_{t \geq 0}$ will be an (\mathbb{F}, \mathbb{P})-martingale if and only if

$$
\begin{equation*}
\partial_{t} f(t, x)+\frac{1}{2} \partial_{x x}^{2} f(t, x)=0,(t, x) \in[0,+\infty) \times \mathbb{R} \tag{0.2}
\end{equation*}
$$

2) in this question, we are looking for functions f of the form

$$
f(t, x)=\sum_{i=0}^{n} \sum_{j=0}^{n} a_{i, j} t^{i} x^{j},(t, x) \in[0,+\infty) \times \mathbb{R}
$$

for some integer n and real numbers $\left(a_{i, j}\right)_{(i, j) \in\{0, \ldots, n\}^{2}}$. Show that the process $f\left(t, B_{t}\right)$ is an (\mathbb{F}, \mathbb{P})-martingale if and only if the $\left(a_{0, j}\right)_{j \in\{0, \ldots, n\}}$ are arbitrarily fixed and

$$
\left\{\begin{array}{l}
a_{i, j}=(-1)^{i} \frac{(j+2 i)!}{2 i!j!} a_{0, j+2 i}, j+2 i \leq n \\
a_{i, j}=0, j+2 i>n
\end{array}\right.
$$

1) Indeed, by Itô's formula the Itô process $\left(f\left(t, B_{t}\right)\right)_{t \geq 0}$ is an $\left(\mathbb{F}^{B, \mathbb{P}}, \mathbb{P}\right)$-local martingale if and only if its drift is equal to 0 with \mathbb{P}-probability 1 , that is

$$
\partial_{t} f\left(t, B_{t}\right)+\frac{1}{2} \partial_{x x}^{2} f\left(t, B_{t}\right)=0, t \geq 0, \mathbb{P} \text {-a.s. }
$$

Since the support of the \mathbb{P}-distribution of B_{t} is \mathbb{R}, we deduce the desired condition. Next, since inequality (0.1) holds, the volatility of $\left(f\left(t, B_{t}\right)\right)_{t \geq 0}$ is automatically in $\mathbb{H}^{2}\left(\mathbb{R}, \mathbb{F}^{B, \mathbb{P}}, \mathbb{P}\right)$, which shows the martingale property.
2) In this case, inequality (0.1) is obviously satisfied, and direct computations prove that (0.2) holds if and only if $a_{1,0}=a_{1,1}=0$ when $n=1$ (the case $n=0$ is trivial), and when $n \geq 2$

$$
\left\{\begin{array}{l}
a_{i+1, j}=-\frac{(j+2)(j+1)}{2(i+1)} a_{i, j+2}, i \in\{0, \ldots, n-1\}, j \in\{0, \ldots, n-2\} \\
a_{n, j+2}=0, j \in\{0, \ldots, n-2\} \\
a_{i+1, n-1}=0, i \in\{0, \ldots, n-1\} \\
a_{i+1, n}=0, i \in\{0, \ldots, n-1\}
\end{array}\right.
$$

It can then easily be checked that this equivalent to having the $\left(a_{0, j}\right)_{j \in\{0, \ldots, n\}}$ arbitrarily fixed and

$$
\left\{\begin{array}{l}
a_{i, j}=(-1)^{i} \frac{(j+2 i)!}{2 i!j!} a_{0, j+2 i}, j+2 i \leq n \\
a_{i, j}=0, j+2 i>n
\end{array}\right.
$$

Exercise 2

Consider, for any $x \in \mathbb{R}^{d}$, the SDE

$$
\mathrm{d} X_{t}^{x}=a\left(X_{t}^{x}\right) \mathrm{d} t+b\left(X_{t}^{x}\right) \mathrm{d} W_{t}, X_{0}^{x}=x,
$$

where W is a \mathbb{R}^{m}-valued Brownian motion, $a: \mathbb{R}^{d} \longrightarrow \mathbb{R}^{d}$ and $b: \mathbb{R}^{d} \longrightarrow \mathbb{R}^{d \times m}$ are measurable and locally bounded. We fix a non-empty, bounded open subset U of \mathbb{R}^{d} and assume that for any $x \in U$, we have with $T_{U}^{x}:=\inf \left\{s \geq 0: X_{s}^{x} \notin U\right\}$, that T_{U}^{x} is \mathbb{P}-integrable.

Moreover, consider the boundary problem

$$
L u(x)+c(x) u(x)=-f(x), \text { for } x \in U, u(x)=g(x), \text { for } x \in \partial U,
$$

where $f \in C_{b}(U), g \in C_{b}(\partial U), c \leq 0$ is a uniformly bounded function on \mathbb{R}^{d}, and L is defined by

$$
L f(x):=\sum_{i=1}^{d} a^{i}(x) \frac{\partial f}{\partial x^{i}}(x)+\frac{1}{2} \sum_{(i, j) \in\{1, \ldots, d\}^{2}}\left(b b^{\top}\right)^{i j}(x) \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}(x) .
$$

Show that if $u \in C^{2}(U) \cap C(\bar{U})$ is a solution of the above boundary problem and $\left(X_{t}^{x}\right)_{t \geq 0}$ is a solution of the SDE for some $x \in U$, then

$$
u(x)=\mathbb{E}^{\mathbb{P}}\left[g\left(X_{T_{U}^{x}}^{x}\right) \exp \left(\int_{0}^{T_{U}^{x}} c\left(X_{s}^{x}\right) \mathrm{d} s\right)\right]+\mathbb{E}^{\mathbb{P}}\left[\int_{0}^{T_{U}^{x}} f\left(X_{s}^{x}\right) \exp \left(\int_{0}^{s} c\left(X_{r}^{x}\right) \mathrm{d} r\right) \mathrm{d} s\right] .
$$

For $m \in \mathbb{N}^{\star}$ large enough so that $\frac{1}{m}<d\left(x, U^{c}\right)$, we define

$$
T_{m}:=\inf \left\{s \geq 0: d\left(X_{s}^{x}, U^{c}\right) \leq 1 / m\right\}
$$

and construct $u_{m} \in C_{c}^{2}\left(\mathbb{R}^{d}, \mathbb{R}\right)$ such that $u=u_{m}$ on $\left\{z \in U: d\left(z, U^{c}\right) \geq 1 / m\right\}$. We apply Itô's formula to $u_{m}\left(X_{t}^{x}\right) \exp \left(\int_{0}^{t} c\left(X_{s}^{x}\right) \mathrm{d} s\right)$, take then the expectation and use that the local martingale is a true martingale as b is locally bounded and $u \in C_{c}^{2}$ to obtain that (for more details, see the end of this document)

$$
\mathbb{E}^{\mathbb{P}}\left[u_{m}\left(X_{t \wedge T_{m}^{x}}^{x}\right) \exp \left(\int_{0}^{t \wedge T_{m}^{x}} c\left(X_{s}^{x}\right) \mathrm{d} s\right)\right]-u_{m}(x)=\mathbb{E}^{\mathbb{P}}\left[\int_{0}^{t \wedge T_{m}^{x}}\left(L u_{m}\left(X_{s}^{x}\right)+c\left(X_{s}^{x}\right) u_{m}\left(X_{s}^{x}\right)\right) \exp \left(\int_{0}^{s} c\left(X_{r}^{x}\right) \mathrm{d} r\right) \mathrm{d} s\right]
$$

Now, as $u_{m}=u$ on $\left\{z \in U: d\left(z, U^{c}\right) \geq \frac{1}{m}\right\}$, by definition of T_{m}^{x} and as u is the solution of the boundary problem, we obtain that

$$
u(x)=\mathbb{E P}\left[u\left(X_{t \wedge T_{m}^{x}}^{x}\right) \exp \left(\int_{0}^{t \wedge T_{m}^{x}} c\left(X_{s}^{x}\right) \mathrm{d} s\right)\right]+\mathbb{E}^{\mathbb{P}}\left[\int_{0}^{t \wedge T_{m}^{x}} f\left(X_{s}^{x}\right) \exp \left(\int_{0}^{s} c\left(X_{r}^{x}\right) \mathrm{d} r\right) \mathrm{d} s\right] .
$$

Since $T_{m}^{x} \uparrow T_{U}^{x}<\infty$, we can let $t \rightarrow \infty$ and then $m \rightarrow \infty$ to conclude, by the dominated convergence theorem, that

$$
u(x)=\mathbb{E}^{\mathbb{P}}\left[g\left(X_{T_{U}^{x}}^{x}\right) \exp \left(\int_{0}^{T_{U}^{x}} c\left(X_{s}^{x}\right) \mathrm{d} s\right)\right]+\mathbb{E}^{\mathbb{P}}\left[\int_{0}^{T_{U}^{x}} f\left(X_{s}^{x}\right) \exp \left(\int_{0}^{s} c\left(X_{r}^{x}\right) \mathrm{d} r\right) \mathrm{d} s\right] .
$$

Exercise 3

Let $\left(B_{t}\right)_{t \geq 0}$ be a standard one-dimensional Brownian motion.

1) Show that the SDE

$$
\begin{equation*}
X_{t}=x+\int_{0}^{t} \sqrt{1+X_{s}^{2}} \mathrm{~d} B_{s}+\frac{1}{2} \int_{0}^{t} X_{s} \mathrm{~d} s, \tag{0.3}
\end{equation*}
$$

admits a unique strong solution for all $x \in \mathbb{R}$.
2) Fix $x \in \mathbb{R}$ and $\left(\beta_{t}, \gamma_{t}\right)_{t \geq 0}$ two independent one-dimensional Brownian motions. Show that

$$
Y_{t}:=\exp \left(\beta_{t}\right)\left(x+\int_{0}^{t} \exp \left(-\beta_{s}\right) \mathrm{d} \gamma_{s}\right), t \geq 0
$$

is well-defined and solves (0.3) for some well-chosen Brownian motion B. Deduce that for $a:=\operatorname{argsinh}(x)$,

$$
\left(Y_{t}, t \geq 0\right) \stackrel{(\text { law })}{=}\left(\sinh \left(a+B_{t}\right), t \geq 0\right)
$$

3) We now go to a slightly more general setting.
a) Show that if the map $\varphi: \mathbb{R} \longrightarrow \mathbb{R}$ is a C^{2} diffeomorphism from \mathbb{R}, then $\Phi_{t}:=\varphi\left(B_{t}\right)$ satisfies

$$
\begin{equation*}
\Phi_{t}=\varphi(0)+\int_{0}^{t} \sigma\left(\Phi_{s}\right) \mathrm{d} B_{s}+\int_{0}^{t} b\left(\Phi_{s}\right) \mathrm{d} s \tag{0.4}
\end{equation*}
$$

where

$$
\sigma(x):=\left(\varphi^{\prime} \circ \varphi^{(-1)}\right)(x), b(x):=\frac{1}{2}\left(\varphi^{\prime \prime} \circ \varphi^{(-1)}\right)(x) .
$$

b) Conversely, if $\sigma, b: \mathbb{R} \longrightarrow \mathbb{R}$ are Lipschitz functions with appropriate growth, we know that the SDE (0.4) admits a unique strong solution. Under which conditions on (σ, b) can we solve the system

$$
\varphi^{\prime}(y)=\sigma(\varphi(y)), \varphi^{\prime \prime}(y)=2 b(\varphi(y))
$$

so that the solution of (0.4) is $\Phi_{t}=\varphi\left(B_{t}\right)$?

1) The drift and volatility are clearly Lipschitz-continuous with linear growth, hence the standard Cauchy-Lipschitz theorem applies.
2) We have for any $t \geq 0$

$$
\mathbb{E}^{\mathbb{P}}\left[\int_{0}^{t} \mathrm{e}^{-2 \beta_{s}} \mathrm{~d} s\right]=\int_{0}^{t} \mathrm{e}^{2 s} \mathrm{~d} s<+\infty
$$

ensuring that Y is well-defined. Next, applying Itô's formula to Y, we get

$$
\mathrm{d} Y_{t}=\left(x+\int_{0}^{t} \exp \left(-\beta_{s}\right) \mathrm{d} \gamma_{s}\right) \mathrm{e}^{\beta_{t}}\left(\mathrm{~d} \beta_{t}+\frac{1}{2} \mathrm{~d} t\right)+\mathrm{d} \gamma_{t}=\frac{1}{2} Y_{t} \mathrm{~d} t+\sqrt{1+Y_{t}^{2}}\left(\frac{Y_{t}}{\sqrt{1+Y_{t}^{2}}} \mathrm{~d} \beta_{t}+\frac{1}{\sqrt{1+Y_{t}^{2}}} \mathrm{~d} \gamma_{t}\right)
$$

Now, let $B:=\int_{0}^{\cdot}\left(\frac{Y_{t}}{\sqrt{1+Y_{t}^{2}}} \mathrm{~d} \beta_{t}+\frac{1}{\sqrt{1+Y_{t}^{2}}} \mathrm{~d} \gamma_{t}\right)$. We have

$$
[B]_{t}=t
$$

ensuring by Lévy's characterisation that B is a Brownian motion.
Next, it is direct to check that $X_{t}:=\left(\sinh \left(a+B_{t}\right)\right.$ is the strong solution to the SDE, which gives the desired result by uniqueness in law.
3)a) It is a simple application of Itô's formula. Indeed, we have

$$
\Phi_{t}=\Phi_{0}+\int_{0}^{t} \varphi^{\prime}\left(B_{s}\right) \mathrm{d} B_{s}+\frac{1}{2} \int_{0}^{t} \varphi^{\prime \prime}\left(B_{s}\right) \mathrm{d} s
$$

and it suffices to notice that $B_{t}=\varphi^{(-1)}\left(\Phi_{t}\right), t \geq 0$.
b) If we can find φ as a C^{2} diffeomorphism satisfying the two ODEs, then clearly $\Phi=\varphi(B)$. Now, it is necessary for this that

$$
\varphi^{\prime}(y) \sigma^{\prime}(\varphi(y))=\sigma(\varphi(y)) \sigma^{\prime}(\varphi(y))=2 b(\varphi(y))
$$

Hence, φ being a diffeomorphism on \mathbb{R}, this means that we must have

$$
\sigma \sigma^{\prime}=2 b
$$

Under this assumption, and if for instance $\sigma \sigma^{\prime}$ is Lipschitz-continuous, and σ has a fixed sign, the result will hold.

How to apply Itô's formula in Exercise 2?

We want to apply Itô's formula to

$$
u_{m}\left(X_{t}^{x}\right) \exp \left(\int_{0}^{t} c\left(X_{s}^{x}\right) d s\right)=f\left(Y_{t}, Z_{t}\right)
$$

where $f: \mathbb{R}^{d+1} \rightarrow \mathbb{R}, f(y, z)=u_{m}(y) \exp (z), Y_{t}=X_{t}^{x}$ and $Z_{t}=\int_{0}^{t} c\left(X_{s}^{x}\right) d s$. In particular, note that $Y_{t}=\left(Y_{t}^{1}, \ldots, Y_{t}^{d}\right)$ is an \mathbb{R}^{d}-valued process, while Z_{t} is an \mathbb{R}-valued process. Hence, we have

$$
\begin{gathered}
\nabla f(y, z)=\binom{\nabla u_{m}(y) \exp (z)}{u_{m}(y) \exp (z)}=\exp (z)\binom{\nabla u_{m}(y)}{u_{m}(y)} \in \mathbb{R}^{d+1} \\
D^{2} f(y, z)=\left(\begin{array}{cc}
D^{2} u_{m}(y) \exp (z) & \nabla u_{m}(y) \exp (z) \\
\left(\nabla u_{m}(y)\right)^{T} \exp (z) & u_{m}(y) \exp (z)
\end{array}\right)=\exp (z)\left(\begin{array}{cc}
D^{2} u_{m}(y) & \nabla u_{m}(y) \\
\left(\nabla u_{m}(y)\right)^{T} & u_{m}(y)
\end{array}\right) \in \mathbb{R}^{(d+1) \times(d+1)}
\end{gathered}
$$

and

$$
\binom{d Y_{t}}{d Z_{t}}=\binom{a\left(Y_{t}\right)}{c\left(Y_{t}\right)} d t+\binom{b\left(Y_{t}\right)}{0} d W_{t}
$$

Therefore, the drift vector of $\left(Y_{t}, Z_{t}\right)$ is $\left(a\left(Y_{t}\right), c\left(Y_{t}\right)\right)$ and the diffusion matrix is $\left(b\left(Y_{t}\right), 0\right)$. In particular, the quadratic covariation matrix is given by

$$
\binom{b\left(Y_{t}\right)}{0}\left(\begin{array}{ll}
b\left(Y_{t}\right)^{T} & 0
\end{array}\right)=\left(\begin{array}{cc}
b\left(Y_{t}\right) b\left(Y_{t}\right)^{T} & 0 \\
0 & 0
\end{array}\right)
$$

i.e., $\mathrm{d}\left[Y^{i}, Y^{j}\right]_{t}=\left(b\left(Y_{t}\right) b\left(Y_{t}\right)^{T}\right)^{i j}$ and $\mathrm{d}[Z, Z]_{t}=\mathrm{d}\left[Y^{i}, Z\right]_{t}=0$, for any $i, j=1, \ldots, d$.

Now, recall Itô's formula (see Theorem 3.4.1, lecture notes) and note that if we have a function $g: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}\left(C^{1}\right.$ in time and C^{2} in space) and an \mathbb{R}^{n}-valued Itô process $d X_{t}=\mu_{t} d t+\sigma_{t} d W_{t}$, then Itô's formula can be written as follows
$g\left(t, X_{t}\right)=g\left(0, X_{0}\right)+\int_{0}^{t}\left[\partial_{t} g\left(s, X_{s}\right)+\left(\nabla_{x} g\left(s, X_{s}\right)\right)^{T} \mu_{t}+\frac{1}{2} \sum_{i, j=1}^{n}\left(\sigma_{t} \sigma_{t}^{T}\right)^{i j}\left(D_{x}^{2} g\left(s, X_{s}\right)\right)^{i j}\right] d t+\int_{0}^{t}\left(\nabla_{x} g\left(s, X_{s}\right)\right)^{T} \sigma_{t} d W_{t}$,
where $\nabla_{x} g\left(s, X_{s}\right)$ is the vector of the spacial first derivatives and $D_{x}^{2} g\left(s, X_{s}\right)$ the matrix of the spacial second derivatives. Then, let us apply Itô's formula to the function f and the \mathbb{R}^{d+1}-valued process $\left(Y_{t}, Z_{t}\right)$. As the function f does not depend on time, we get

$$
\begin{aligned}
f\left(Y_{t}, Z_{t}\right) & =f\left(Y_{0}, Z_{0}\right)+\int_{0}^{t}\left[\left(\nabla f\left(Y_{s}, Z_{s}\right)\right)^{T}\binom{a\left(Y_{t}\right)}{c\left(Y_{t}\right)}+\frac{1}{2} \sum_{i, j=1}^{d+1}\left(\left(\begin{array}{cc}
b\left(Y_{t}\right) b\left(Y_{t}\right)^{T} & 0 \\
0 & 0
\end{array}\right)\right)^{i j}\left(D^{2} f\left(Y_{s}, Z_{s}\right)\right)^{i j}\right] d t \\
& +\int_{0}^{t}\left(\nabla f\left(Y_{s}, Z_{s}\right)\right)^{T}\binom{b\left(Y_{t}\right)}{0} d W_{t} \\
& =f\left(Y_{0}, Z_{0}\right)+\int_{0}^{t} \exp \left(Z_{s}\right)\left[\left(\nabla u_{m}\left(Y_{s}\right)\right)^{T} a\left(Y_{s}\right)+u_{m}\left(Y_{s}\right) c\left(Y_{s}\right)+\frac{1}{2} \sum_{i, j=1}^{d}\left(b\left(Y_{t}\right) b\left(Y_{t}\right)^{T}\right)^{i j}\left(D^{2} u_{m}\left(Y_{s}\right)\right)^{i j}\right] d s \\
& +\int_{0}^{t} \exp \left(Z_{s}\right)\left(\nabla u_{m}\left(Y_{s}\right)\right)^{T} b\left(Y_{t}\right) d W_{t} \\
& =u_{m}\left(Y_{0}\right)+\int_{0}^{t} \exp \left(Z_{s}\right)\left[L u_{m}\left(Y_{s}\right)+u_{m}\left(Y_{s}\right) c\left(Y_{s}\right)\right] d s+\int_{0}^{t} \exp \left(Z_{s}\right)\left(\nabla u_{m}\left(Y_{s}\right)\right)^{T} b\left(Y_{t}\right) d W_{t}
\end{aligned}
$$

where L is the Dynkin operator defined in Ex. 2.

