Brownian motion and Stochastic Calculus Dylan Possamaï

Assignment 10—solutions

Exercise 1

We fix a standard one-dimensional (\mathbb{F}, \mathbb{P}) -Brownian motion.

1) Show that for any $C^{1,2}$ function $f: [0, +\infty) \times \mathbb{R} \longrightarrow \mathbb{R}$, such that there exists some continuous function $C: [0, +\infty) \longrightarrow [0, +\infty)$ with

$$\partial_x f(t,x) \le C(t) e^{C(t)|x|}, \ (t,x) \in [0,+\infty) \times \mathbb{R},$$

$$(0.1)$$

the process $(f(t,B_t))_{t\geq 0}$ will be an (\mathbb{F},\mathbb{P}) -martingale if and only if

$$\partial_t f(t,x) + \frac{1}{2} \partial_{xx}^2 f(t,x) = 0, \ (t,x) \in [0,+\infty) \times \mathbb{R}.$$

$$(0.2)$$

2) in this question, we are looking for functions f of the form

$$f(t,x) = \sum_{i=0}^{n} \sum_{j=0}^{n} a_{i,j} t^{i} x^{j}, \ (t,x) \in [0,+\infty) \times \mathbb{R},$$

for some integer n and real numbers $(a_{i,j})_{(i,j)\in\{0,\ldots,n\}^2}$. Show that the process $f(t, B_t)$ is an (\mathbb{F}, \mathbb{P}) -martingale if and only if the $(a_{0,j})_{j\in\{0,\ldots,n\}}$ are arbitrarily fixed and

$$\begin{cases} a_{i,j} = (-1)^i \frac{(j+2i)!}{2i!j!} a_{0,j+2i}, \ j+2i \le n, \\ a_{i,j} = 0, \ j+2i > n, \end{cases}$$

1) Indeed, by Itô's formula the Itô process $(f(t, B_t))_{t\geq 0}$ is an $(\mathbb{F}^{B,\mathbb{P}}, \mathbb{P})$ -local martingale if and only if its drift is equal to 0 with \mathbb{P} -probability 1, that is

$$\partial_t f(t, B_t) + \frac{1}{2} \partial_{xx}^2 f(t, B_t) = 0, \ t \ge 0, \ \mathbb{P} ext{-a.s.}$$

Since the support of the \mathbb{P} -distribution of B_t is \mathbb{R} , we deduce the desired condition. Next, since inequality (0.1) holds, the volatility of $(f(t, B_t))_{t\geq 0}$ is automatically in $\mathbb{H}^2(\mathbb{R}, \mathbb{F}^{B,\mathbb{P}}, \mathbb{P})$, which shows the martingale property.

2) In this case, inequality (0.1) is obviously satisfied, and direct computations prove that (0.2) holds if and only if $a_{1,0} = a_{1,1} = 0$ when n = 1 (the case n = 0 is trivial), and when $n \ge 2$

$$\begin{cases} a_{i+1,j} = -\frac{(j+2)(j+1)}{2(i+1)} a_{i,j+2}, \ i \in \{0, \dots, n-1\}, \ j \in \{0, \dots, n-2\}, \\ a_{n,j+2} = 0, \ j \in \{0, \dots, n-2\}, \\ a_{i+1,n-1} = 0, \ i \in \{0, \dots, n-1\}, \\ a_{i+1,n} = 0, \ i \in \{0, \dots, n-1\}. \end{cases}$$

It can then easily be checked that this equivalent to having the $(a_{0,j})_{j \in \{0,...,n\}}$ arbitrarily fixed and

$$\begin{cases} a_{i,j} = (-1)^i \frac{(j+2i)!}{2i!j!} a_{0,j+2i}, \ j+2i \le n, \\ a_{i,j} = 0, \ j+2i > n, \end{cases}$$

Exercise 2

Consider, for any $x \in \mathbb{R}^d$, the SDE

$$\mathrm{d}X_t^x = a(X_t^x)\mathrm{d}t + b(X_t^x)\mathrm{d}W_t, \ X_0^x = x,$$

where W is a \mathbb{R}^m -valued Brownian motion, $a: \mathbb{R}^d \longrightarrow \mathbb{R}^d$ and $b: \mathbb{R}^d \longrightarrow \mathbb{R}^{d \times m}$ are measurable and locally bounded. We fix a non-empty, bounded open subset U of \mathbb{R}^d and assume that for any $x \in U$, we have with $T_U^x := \inf\{s \ge 0: X_s^x \notin U\}$, that T_U^x is \mathbb{P} -integrable.

Moreover, consider the boundary problem

$$Lu(x) + c(x)u(x) = -f(x)$$
, for $x \in U$, $u(x) = g(x)$, for $x \in \partial U$,

where $f \in C_b(U)$, $g \in C_b(\partial U)$, $c \leq 0$ is a uniformly bounded function on \mathbb{R}^d , and L is defined by

$$Lf(x) := \sum_{i=1}^{d} a^{i}(x) \frac{\partial f}{\partial x^{i}}(x) + \frac{1}{2} \sum_{(i,j) \in \{1,\dots,d\}^{2}} \left(bb^{\top}\right)^{ij}(x) \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}(x).$$

Show that if $u \in C^2(U) \cap C(\overline{U})$ is a solution of the above boundary problem and $(X_t^x)_{t\geq 0}$ is a solution of the SDE for some $x \in U$, then

$$u(x) = \mathbb{E}^{\mathbb{P}}\left[g(X_{T_U^x}^x)\exp\left(\int_0^{T_U^x} c(X_s^x)\mathrm{d}s\right)\right] + \mathbb{E}^{\mathbb{P}}\left[\int_0^{T_U^x} f(X_s^x)\exp\left(\int_0^s c(X_r^x)\mathrm{d}r\right)\mathrm{d}s\right].$$

For $m \in \mathbb{N}^*$ large enough so that $\frac{1}{m} < d(x, U^c)$, we define

$$T_m := \inf \{ s \ge 0 : d(X_s^x, U^c) \le 1/m \},\$$

and construct $u_m \in C_c^2(\mathbb{R}^d, \mathbb{R})$ such that $u = u_m$ on $\{z \in U : d(z, U^c) \ge 1/m\}$. We apply Itô's formula to $u_m(X_t^x) \exp\left(\int_0^t c(X_s^x) ds\right)$, take then the expectation and use that the local martingale is a true martingale as b is locally bounded and $u \in C_c^2$ to obtain that (for more details, see the end of this document)

$$\mathbb{E}^{\mathbb{P}}\left[u_m(X_{t\wedge T_m^x}^x)\exp\left(\int_0^{t\wedge T_m^x}c(X_s^x)\mathrm{d}s\right)\right] - u_m(x) = \mathbb{E}^{\mathbb{P}}\left[\int_0^{t\wedge T_m^x}\left(Lu_m(X_s^x) + c(X_s^x)u_m(X_s^x)\right)\exp\left(\int_0^s c(X_r^x)\mathrm{d}r\right)\mathrm{d}s\right].$$

Now, as $u_m = u$ on $\{z \in U : d(z, U^c) \ge \frac{1}{m}\}$, by definition of T_m^x and as u is the solution of the boundary problem, we obtain that

$$u(x) = \mathbb{EP}\bigg[u(X_{t\wedge T_m^x}^x)\exp\bigg(\int_0^{t\wedge T_m^x} c(X_s^x)\mathrm{d}s\bigg)\bigg] + \mathbb{E}^{\mathbb{P}}\bigg[\int_0^{t\wedge T_m^x} f(X_s^x)\exp\bigg(\int_0^s c(X_r^x)\mathrm{d}r\bigg)\mathrm{d}s\bigg].$$

Since $T_m^x \uparrow T_U^x < \infty$, we can let $t \to \infty$ and then $m \to \infty$ to conclude, by the dominated convergence theorem, that

$$u(x) = \mathbb{E}^{\mathbb{P}}\left[g(X_{T_U^x}^x)\exp\left(\int_0^{T_U^x} c(X_s^x)\mathrm{d}s\right)\right] + \mathbb{E}^{\mathbb{P}}\left[\int_0^{T_U^x} f(X_s^x)\exp\left(\int_0^s c(X_r^x)\mathrm{d}r\right)\mathrm{d}s\right].$$

Exercise 3

Let $(B_t)_{t\geq 0}$ be a standard one-dimensional Brownian motion.

1) Show that the SDE

$$X_t = x + \int_0^t \sqrt{1 + X_s^2} dB_s + \frac{1}{2} \int_0^t X_s ds,$$
 (0.3)

admits a unique strong solution for all $x \in \mathbb{R}$.

2) Fix $x \in \mathbb{R}$ and $(\beta_t, \gamma_t)_{t \geq 0}$ two independent one-dimensional Brownian motions. Show that

$$Y_t := \exp(\beta_t) \left(x + \int_0^t \exp(-\beta_s) \mathrm{d}\gamma_s \right), \ t \ge 0,$$

is well-defined and solves (0.3) for some well-chosen Brownian motion B. Deduce that for $a := \operatorname{argsinh}(x)$,

$$(Y_t, t \ge 0) \stackrel{(\text{law})}{=} (\sinh(a+B_t), t \ge 0).$$

3) We now go to a slightly more general setting.

a) Show that if the map $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$ is a C^2 diffeomorphism from \mathbb{R} , then $\Phi_t := \varphi(B_t)$ satisfies

$$\Phi_t = \varphi(0) + \int_0^t \sigma(\Phi_s) \mathrm{d}B_s + \int_0^t b(\Phi_s) \mathrm{d}s, \qquad (0.4)$$

where

$$\sigma(x) := (\varphi' \circ \varphi^{(-1)})(x), \ b(x) := \frac{1}{2}(\varphi'' \circ \varphi^{(-1)})(x).$$

b) Conversely, if $\sigma, b : \mathbb{R} \longrightarrow \mathbb{R}$ are Lipschitz functions with appropriate growth, we know that the SDE (0.4) admits a unique strong solution. Under which conditions on (σ, b) can we solve the system

$$\varphi'(y) = \sigma(\varphi(y)), \ \varphi''(y) = 2b(\varphi(y)),$$

so that the solution of (0.4) is $\Phi_t = \varphi(B_t)$?

1) The drift and volatility are clearly Lipschitz-continuous with linear growth, hence the standard Cauchy–Lipschitz theorem applies.

2) We have for any $t \ge 0$

$$\mathbb{E}^{\mathbb{P}}\left[\int_{0}^{t} e^{-2\beta_{s}} ds\right] = \int_{0}^{t} e^{2s} ds < +\infty,$$

ensuring that Y is well-defined. Next, applying Itô's formula to Y, we get

$$dY_t = \left(x + \int_0^t \exp(-\beta_s) d\gamma_s\right) e^{\beta_t} \left(d\beta_t + \frac{1}{2} dt\right) + d\gamma_t = \frac{1}{2} Y_t dt + \sqrt{1 + Y_t^2} \left(\frac{Y_t}{\sqrt{1 + Y_t^2}} d\beta_t + \frac{1}{\sqrt{1 + Y_t^2}} d\gamma_t\right).$$

Now, let $B := \int_0^{\cdot} \left(\frac{Y_t}{\sqrt{1+Y_t^2}} \mathrm{d}\beta_t + \frac{1}{\sqrt{1+Y_t^2}} \mathrm{d}\gamma_t \right)$. We have

 $[B]_t = t,$

ensuring by Lévy's characterisation that B is a Brownian motion.

Next, it is direct to check that $X_t := (\sinh(a + B_t))$ is the strong solution to the SDE, which gives the desired result by uniqueness in law.

(3)a) It is a simple application of Itô's formula. Indeed, we have

$$\Phi_t = \Phi_0 + \int_0^t \varphi'(B_s) \mathrm{d}B_s + \frac{1}{2} \int_0^t \varphi''(B_s) \mathrm{d}s,$$

and it suffices to notice that $B_t = \varphi^{(-1)}(\Phi_t), t \ge 0.$

b) If we can find φ as a C^2 diffeomorphism satisfying the two ODEs, then clearly $\Phi = \varphi(B)$. Now, it is necessary for this that

$$\varphi'(y)\sigma'(\varphi(y)) = \sigma(\varphi(y))\sigma'(\varphi(y)) = 2b(\varphi(y)).$$

Hence, φ being a diffeomorphism on \mathbb{R} , this means that we must have

 $\sigma\sigma' = 2b.$

Under this assumption, and if for instance $\sigma\sigma'$ is Lipschitz-continuous, and σ has a fixed sign, the result will hold.

How to apply Itô's formula in Exercise 2?

We want to apply Itô's formula to

$$u_m(X_t^x) \exp\left(\int_0^t c(X_s^x) ds\right) = f(Y_t, Z_t),$$

where $f : \mathbb{R}^{d+1} \to \mathbb{R}$, $f(y, z) = u_m(y) \exp(z)$, $Y_t = X_t^x$ and $Z_t = \int_0^t c(X_s^x) ds$. In particular, note that $Y_t = (Y_t^1, \dots, Y_t^d)$ is an \mathbb{R}^d -valued process, while Z_t is an \mathbb{R} -valued process. Hence, we have

$$\nabla f(y,z) = \begin{pmatrix} \nabla u_m(y) \exp(z) \\ u_m(y) \exp(z) \end{pmatrix} = \exp(z) \begin{pmatrix} \nabla u_m(y) \\ u_m(y) \end{pmatrix} \in \mathbb{R}^{d+1},$$
$$D^2 f(y,z) = \begin{pmatrix} D^2 u_m(y) \exp(z) \\ (\nabla u_m(y))^T \exp(z) & u_m(y) \exp(z) \end{pmatrix} = \exp(z) \begin{pmatrix} D^2 u_m(y) & \nabla u_m(y) \\ (\nabla u_m(y))^T & u_m(y) \end{pmatrix} \in \mathbb{R}^{(d+1) \times (d+1)},$$

and

$$\begin{pmatrix} dY_t \\ dZ_t \end{pmatrix} = \begin{pmatrix} a(Y_t) \\ c(Y_t) \end{pmatrix} dt + \begin{pmatrix} b(Y_t) \\ 0 \end{pmatrix} dW_t.$$

Therefore, the drift vector of (Y_t, Z_t) is $(a(Y_t), c(Y_t))$ and the diffusion matrix is $(b(Y_t), 0)$. In particular, the quadratic covariation matrix is given by

$$\begin{pmatrix} b(Y_t) \\ 0 \end{pmatrix} \begin{pmatrix} b(Y_t)^T & 0 \end{pmatrix} = \begin{pmatrix} b(Y_t)b(Y_t)^T & 0 \\ 0 & 0 \end{pmatrix},$$

i.e., $d[Y^i, Y^j]_t = (b(Y_t)b(Y_t)^T)^{ij}$ and $d[Z, Z]_t = d[Y^i, Z]_t = 0$, for any i, j = 1, ..., d.

Now, recall Itô's formula (see Theorem 3.4.1, lecture notes) and note that if we have a function $g : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ (C^1 in time and C^2 in space) and an \mathbb{R}^n -valued Itô process $dX_t = \mu_t dt + \sigma_t dW_t$, then Itô's formula can be written as follows

$$g(t, X_t) = g(0, X_0) + \int_0^t \left[\partial_t g(s, X_s) + (\nabla_x g(s, X_s))^T \mu_t + \frac{1}{2} \sum_{i,j=1}^n (\sigma_t \sigma_t^T)^{ij} (D_x^2 g(s, X_s))^{ij} \right] dt + \int_0^t (\nabla_x g(s, X_s))^T \sigma_t dW_t,$$

where $\nabla_x g(s, X_s)$ is the vector of the spacial first derivatives and $D_x^2 g(s, X_s)$ the matrix of the spacial second derivatives. Then, let us apply Itô's formula to the function f and the \mathbb{R}^{d+1} -valued process (Y_t, Z_t) . As the function f does not depend on time, we get

$$\begin{split} f(Y_t, Z_t) &= f(Y_0, Z_0) + \int_0^t \left[(\nabla f(Y_s, Z_s))^T \begin{pmatrix} a(Y_t) \\ c(Y_t) \end{pmatrix} + \frac{1}{2} \sum_{i,j=1}^{d+1} \left(\begin{pmatrix} b(Y_t)b(Y_t)^T & 0 \\ 0 & 0 \end{pmatrix} \right)^{ij} (D^2 f(Y_s, Z_s))^{ij} \right] dt \\ &+ \int_0^t (\nabla f(Y_s, Z_s))^T \begin{pmatrix} b(Y_t) \\ 0 \end{pmatrix} dW_t \\ &= f(Y_0, Z_0) + \int_0^t \exp(Z_s) \left[(\nabla u_m(Y_s))^T a(Y_s) + u_m(Y_s)c(Y_s) + \frac{1}{2} \sum_{i,j=1}^d (b(Y_t)b(Y_t)^T)^{ij} (D^2 u_m(Y_s))^{ij} \right] ds \\ &+ \int_0^t \exp(Z_s) (\nabla u_m(Y_s))^T b(Y_t) dW_t \\ &= u_m(Y_0) + \int_0^t \exp(Z_s) \left[Lu_m(Y_s) + u_m(Y_s)c(Y_s) \right] ds + \int_0^t \exp(Z_s) (\nabla u_m(Y_s))^T b(Y_t) dW_t, \end{split}$$

where L is the Dynkin operator defined in Ex. 2.