Brownian motion and Stochastic Calculus
Dylan Possamai

Assignment 10—solutions

Exercise 1

We fix a standard one-dimensional (F,P)-Brownian motion.

1) Show that for any C? function f : [0,4+00) x R — R, such that there exists some continuous function C :
[0, +00) — [0, +00) with
0, f(t,z)| < C(t)eCDIl (#,2) € [0, +00) x R, (0.1)

the process (f(t, Bt))t>o0 will be an (F,P)-martingale if and only if
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2) in this question, we are looking for functions f of the form
ft,z) = ZZamtixj, (t,z) € [0,400) x R,

i=0 j=0

for some integer n and real numbers (a; ;) j)e{o,...,n}2- Show that the process f(t, B;) is an (IF, P)-martingale if
and only if the (ao ;) eo,....n} are arbitrarily fixed and

_ (G +29)!
aij = (=1) o

aiyj:(),j+2i>n,

Qo,j+2i, .7 + 21 S n,

1) Indeed, by It&’s formula the Ité process (f(t, B;))i>o is an (FZF P)-local martingale if and only if its
drift is equal to 0 with P-probability 1, that is

1
Ouf(t, By) + iaizf(t, B;) =0, t >0, P-as.

Since the support of the P-distribution of B; is R, we deduce the desired condition. Next, since inequality
(0.1) holds, the volatility of (f(t,B:));>0 is automatically in H?*(R,F5¥ P), which shows the martingale
property.

2) In this case, inequality (0.1) is obviously satisfied, and direct computations prove that (0.2) holds if
and only if a1 90 = a1,1 =0 when n =1 (the case n =0 is trivial), and when n > 2

G+2)+1)
2 + 1)
an7j+2:O,j€{O,...,n—2},
Ai+1,n—1 =0,1¢€ {O,...,n—l},
ai+17n:0, iE{O,...,?’L—l}.

Ait1,5 = — Qi +2, iE{O,...,n—l},jE{O,...,?’L—2},

n) arbitrarily fixed and

.....

_ (G +2i)!
ai; = (=1) o

a;; =0, 7+2t>n,

ag,jy2i, j+2i < n,



Exercise 2

Consider, for any z € R%, the SDE
dX? = a(XP)dt + b(X])dW,, X§ = x,

where W is a R™-valued Brownian motion, a : R — R% and b : R — R4*™ are measurable and locally bounded. We
fix a non-empty, bounded open subset U of R? and assume that for any x € U, we have with 7% := inf{s > 0: X2 ¢ U },
that T{; is P-integrable.

Moreover, consider the boundary problem
Lu(x) + c(x)u(z) = = f(x), for z € U, u(x) = g(x), for x € U,

where f € Cy(U), g € Cp(0U), ¢ < 0 is a uniformly bounded function on R¢, and L is defined by

d .. 2
L) = Y@t @y Y (0@ g )

i=1 (i,5)€{1,...,d}2

Show that if u € C?(U) N C(U) is a solution of the above boundary problem and (XZ);>¢ is a solution of the SDE for

some z € U, then
u(z) = EF {g(x%g) exp ( /0 K c(X;)dsﬂ + ]EP{ i F(XT)exp < /O ) c(Xf)dr) ds].

0

For m € N* large enough so that 1 < d(z,U¢), we define
T :=inf {s > 0:d(X?,U°) <1/m},

and construct u, € C*(R%,R) such that u = u,, on {z € U : d(z,U¢) > 1/m}. We apply It6’s formula to

U (XT) exp (fot c(X;“)ds), take then the expectation and use that the local martingale is a true martingale
as b is locally bounded and u € C? to obtain that (for more details, see the end of this document)

E? {um(XfAT;) exp < /0 o C(Xg)dsﬂ — Up(z) = EP { /0 e (Lt (X2) + (X T )ty (X 7)) exp ( /0 ) C(Xf)dr> ds} .

Now, as u,, = u on {z e U :d(z,U0° > %}, by definition of 77 and as u is the solution of the boundary
problem, we obtain that

u(z) = EP [u(xg;m) exp ( /0 i c(Xg)ds>] +EF [ /O o F(XT)exp ( /0 ) c(Xf)dr) ds}

Since 17 1T T} < oo, we can let ¢ — oo and then m — oo to conclude, by the dominated convergence
theorem, that

Ty

u(z) = EF [g(X%g)exp (/OTU c(X;”)dsﬂ + EP{ ; F(XZF)exp (/0 c(Xf)dr> ds].

Exercise 3

Let (Bt)t>0 be a standard one-dimensional Brownian motion.
1) Show that the SDE
t t
1
Xt::v—i—/ \/1+X§st+§/ Xds, (0.3)
0 0

admits a unique strong solution for all z € R.



2) Fix z € R and (B¢, Y4)t>0 two independent one-dimensional Brownian motions. Show that

t
viimea() (o + [ ool 10
0

is well-defined and solves (0.3) for some well-chosen Brownian motion B. Deduce that for a := argsinh(x),

(

s, t > 0) "2 (sinh(a + By), ¢ > 0).

3) We now go to a slightly more general setting.

a) Show that if the map ¢ : R — R is a C? diffeomorphism from R, then ®; := (B;) satisfies

B, = p(0) + /O o(®,)dB, + /O b(®.,)ds, (0.4)

where
1

o(z) = (¢ 0 p"V)(2), b(x) := (e P )(2).

b) Conversely, if 0,b : R — R are Lipschitz functions with appropriate growth, we know that the SDE (0.4)
admits a unique strong solution. Under which conditions on (¢, b) can we solve the system

©'(y) = a(e(y)), ¥"(y) = 2b(p(y)),

so that the solution of (0.4) is ®; = (B4)?

1) The drift and volatility are clearly Lipschitz-continuous with linear growth, hence the standard
Cauchy—Lipschitz theorem applies.

2) We have for any t > 0

t t
EP{/ eQﬁSds} :/ e?*ds < +o0,
0 0

ensuring that Y is well-defined. Next, applying It6’s formula to Y, we get

¢ 1 1 Y; 1
dY; = :c+/ exp(—fBs)d S)eﬁt(dﬂ —i——dt)—i—d :—Ydt—i—\/l—i—Y?( dg; + d )
t ( 0 p( )’7 t 2 715 2 t t 1+}/t2 t m ’yt

Now, let B := [, (

\/%dﬂt + \/ﬁd%). ‘We have

[B]t = ta
ensuring by Lévy’s characterisation that B is a Brownian motion.

Next, it is direct to check that X; := (sinh(a + B;) is the strong solution to the SDE, which gives the
desired result by uniqueness in law.

3)a) It is a simple application of Ité’s formula. Indeed, we have

t 1 t
¢t = @0 —|—/ (p/(BS)dBS —+ 5/ (P/I(Bs)ds,
0 0

and it suffices to notice that B; = (=1 (®,), t > 0.

b) If we can find ¢ as a C? diffeomorphism satisfying the two ODEs, then clearly ® = p(B). Now, it is
necessary for this that



Hence, ¢ being a diffeomorphism on R, this means that we must have
oo’ = 2b.

Under this assumption, and if for instance oo’ is Lipschitz-continuous, and ¢ has a fixed sign, the result
will hold.

How to apply It6’s formula in Exercise 27
We want to apply 1td’s formula to

wn (x| t (X215 ) = f(Yi, 20,

where f: R = R, f(y,2) = um(y)exp(z), V; = X¥ and Z; = fo c(X?)ds. In particular, note that ¥; = (YV;},...,YV,4)
is an R%-valued process, while Z; is an R-valued process. Hence, we have

witne = (Teriny) = (T <

20y ) = [ PPum@)exp(z)  Vum(y)exp(2)\ _ o\ D*um(y)  Vum(y) (d+1)x (d+1)
D1y, )_((Vum(y))Texp(Z) um<y>exp<z>)‘ p“(wum@))T um<y>)ew+ e

av.\ _ (a(¥:) b(v)
<dZt) - <C(Yt) at+ (") aw,.
Therefore, the drift vector of (Yz, Z;) is (a(Yz), c(Yz)) and the diffusion matrix is (b(Y%),0). In particular, the quadratic

covariation matrix is given by
T

and

0 0 0
ie., d[Y?, Y], = (0(YD)b(Y:)T)¥ and d[Z, Z], = d[Y?, Z]; =0, for any i,j = 1,...,d.

Now, recall Itd’s formula (see Theorem 3.4.1, lecture notes) and note that if we have a function g : R x R® — R (C! in
time and C? in space) and an R™-valued It process dX; = pdt + o dWy, then Itd’s formula can be written as follows

t 1 n ) t
g(t, X¢) = g(0, Xo) + / Org (s, Xa) + (Vag(s, X)) + 5 Z o )7 (D3g(s, X)) | dt + / (Vay(s, X)) o dWr,
0 J=1 0

where V,g(s, X5) is the vector of the spacial first derivatives and D2g(s, X) the matrix of the spacial second derivatives.
Then, let us apply Itd’s formula to the function f and the R4*+!-valued process (Y3, Z;). As the function f does not
depend on time, we get

F45.20) = £(%0.Z0) + | sz <8§§>+§§; (000" 3))“ (D2f (Yo, 22)) | dt
+ /Ot(Vf(Ys,Zs))T <b(oyt)) AW,

= f(Yo, Z0) + /0 exp(Zs) | (Vum(Ye)TalYs) + um(Ye)e(Ye) + 5 D (b(Y0)b(e)")” (D?um(¥;))V | ds

4 / exD(Z) (Tt (Y2)) TH(Y3) AW,

= wn(05) % [ exp(Z0) L (V) + (VeV} ds + [ explZ0) (P (V) B )W

where L is the Dynkin operator defined in Ex. 2.



